斜率有几个公式
斜率的公式有:设直线倾斜角为α斜率为k,k=tanα=y/x,设已知点为(a,b)未知点为(x,y)。
斜率亦称“角系数”,表示一条直线相对于横轴的倾斜程度。
一条直线与某平面直角坐标系横轴正半轴方向的夹角的正切值即该直线相对于该坐标系的斜率。
如果直线与x轴垂直,直角的正切值无穷大,故此直线不存在斜率。
斜率的三个公式导数为
斜率的三个公式如下:
1、过两点的直线斜率公式k=y2-y1/x2-x1
2、点斜式可有上式得y2-y1=k(x2-x1)
3、斜截式直线与y轴交点(0,b)y=kx+b3
课标
在义务教育阶段,学生学习了一次函数,它的几何意义表示为一条直线,一次项的系数就是直线的斜率,只不过当直线与x轴垂直的时候无法表示。虽然没有明确给出斜率这个名词,但实际上思想已经渗透到其中。
在高中阶段对必修一以及必修二当中都讨论了有关直线问题,选修一还有选修二也都提到了与直线相关的一些问题。上述列举的内容,实际上都涉及到了斜率的概念,因此可以说斜率这个概念是学生逐渐积淀下来的一个重要的数学概念之一。
数学
首先就是从实际意义看,斜率就是我们所说的坡度,是高度的平均变化率,用坡度来刻划道路的倾斜程度,也就是用坡面的切直高度和水平长度的比,相当于在水平方向移动一千米,在切直方向上升或下降的数值,这个比值实际上就表示了坡度的大小。
其次,从倾斜角的正切值来看;还有就是从向量看,是直线向上方向的向量与x轴方向上的单位向量的夹角;最后是从导数这个视角来再次认识斜率的概念,这里实际上就是直线纵坐标随横坐标的瞬时变化率。
教材
从大纲来看,教材在处理直线的斜率这一部分知识的时候,首先讲直线的倾斜角,然后再讲直线的斜率,之后再来引入经过直线上的两点的斜率公式的推导;从新课程标准来看,可以看到人教版A版的教材是先讲直线的倾斜角,然后再讲直线的斜率,只不过在处理上,是以问题的提出的形式来说。
斜率的五种公式适用范围
当直线L的斜率存在时,斜截式y=kx+b,当x=0时,y=b。当直线L的斜率存在时,点斜式为y2-y1=k(x2-x1)。斜率计算:ax+by+c=0中,k=-a/b。其斜率等于其切线与x轴正方向所成角的正切值,即k=tanα。
斜率,别称角系数,是表示一条直线或曲线的切线关于横坐标轴倾斜程度的量。
斜率是数学、几何学名词,可用两点的纵坐标之差与横坐标之差的比来表示,即k=tanα或k=Δy/Δx。如果直线与x轴互相垂直,直角的正切值为tan90°,故直线的斜率为无穷大。
关于斜率的几个公式
斜率的公式有:设直线倾斜角为α斜率为k,k=tanα=y/x,设已知点为(a,b)未知点为(x,y)。斜率亦称“角系数”,表示一条直线相对于横轴的倾斜程度。一条直线与某平面直角坐标系横轴正半轴方向的夹角的正切值即该直线相对于该坐标系的斜率。如果直线与x轴垂直,直角的正切值无穷大,故此直线不存在斜率。
直线的斜率公式是什么时候学的
直线方程五种计算方法。
一、直线方程计算方法如下:
1、点斜式:已知直线过点(x0,y0),斜率为k,则直线方程为y-y0=k(x-x0)。
2、斜截式:已知直线在y轴上的截距为b,斜率为k,则直线方程为y=kx+b。
3、两点式:已知一条直线经过P1(x1,y1),P2(x2,y2)两点,则直线方程为x-x1/x2-x1=y-y1/y2-y1,但不包括垂直于坐标轴的直线。
4、截距式:已知直线在x轴和y轴上的截距为a,b,则直线方程为x/a+y/b=1。
二、直线方程一般式斜率求法如下:
2、斜率是指一条直线与平面直角坐标系横轴正半轴方向的夹角的正切值,即该直线相对于该坐标系的斜率,一般式公式:k=-A/B。
3、横截距是指一条直线与横轴相交的点(a,0)与原点的距离,一般式的公式:a=-C/A。
4、纵截距是指一条直线与纵轴相交的点(0,b)与原点的距离,一般式的公式:b=-C/B。
三、求直线方程的一般方法:
1、直接法:根据已知条件,选择适当的直线方程形式,直接求出直线方程。应明确直线方程的几种形式及各自的特点,合理选择解决方法,已知一点通常选择点斜式;已知斜率选择斜截式或点斜式;已知在两坐标轴上的截距用截距式;已知两点用两点式。
2、待定系数法:先设出直线的方程,再根据已知条件求出假设系数,最后代入直线方程,待定系数法常适用于斜截式,已知两点坐标。
3、利用待定系数法求直线方程的步骤:设方程;求系数;代入方程得直线方程。如果已知直线过一个定点,可以利用直线的点斜式求方程,也可以利用斜截式、截距式等形式求解。
四、直线方程表达形式
K=-A/B,b=-C/B
A1/A2=B1/B2≠C1/C2←→两直线平行。
A1/A2=B1/B2=C1/C2←→两直线重合。
横截距a=-C/A
纵截距b=-C/B
2、点斜式:y-y0=k(x-x0)【适用于不垂直于x轴的直线】。
表示斜率为k,且过(x0,y0)的直线。
3、截距式:x/a+y/b=1【适用于不过原点或不垂直于x轴、y轴的直线】。
表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线。
4、斜截式:y=kx+b【适用于不垂直于x轴的直线】。
表示斜率为k且y轴截距为b的直线。
5、两点式:【适用于不垂直于x轴、y轴的直线】。
表示过(x1,y1)和(x2,y2)的直线。
(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)
6、交点式:f1(x,y)*m+f2(x,y)=0【适用于任何直线】。
表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线。
7、点平式:f(x,y)-f(x0,y0)=0【适用于任何直线】。
表示过点(x0,y0)且与直线f(x,y)=0平行的直线。
8、法线式:x·cosα+ysinα-p=0【适用于不平行于坐标轴的直线】。
过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度。
9、点向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)【适用于任何直线】。
表示过点(x0,y0)且方向向量为(u,v)的直线。
10、法向式:a(x-x0)+b(y-y0)=0【适用于任何直线】。
表示过点(x0,y0)且与向量(a,b)垂直的直线。
以上就是关于斜率有几个公式,斜率的三个公式导数为的全部内容,以及斜率有几个公式的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。