直线与曲线相切斜率有什么关系
直线与曲线相切,那么曲线在切来点的斜率k1=直线斜率k2,曲线在切点的斜率可以对曲线求导,得到导函自数,进而得到切线斜率。而直线斜率可以直接得到。然后就得到一个等式,最终得到要求的未知量。相切的充要条件是,直线方程与曲线方程组成的方程组有且只有一个实数根。
斜率是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。
斜率又称“角系数”,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。如果直线与x轴互相垂直,直角的正切值无穷大,故此直线不存在斜率。当直线L的斜率存在时,对于一次函数y=kx+b,(斜截式)k即该函数图像的斜率。
直线与曲线相切由此可以得出什么结论
直线与曲线相切
那么曲线在切点的斜率k1=直线斜率k2
曲线在切点的斜率可以对曲线求导,得到导函数,进而得到切线斜率
而直线斜率可以直接得到
然后就得到一个等式,最终得到要求的未知量
扩展资料:
相切是平面上的圆与另一个几何形状的一种位置关系。
若直线与曲线交于两点,且这两点无限相近,趋于重合时,该直线就是该曲线在该点的切线。初中数学中,若一条直线垂直于圆的半径且过圆的半径的外端,称这条直线与圆相切。
这里,“另一个几何形状”是圆或直线时,两者之间只有一个交点(公共点),当“另一个几何形状”是多边形时,圆与多边形的每条边之间仅有一个交点。这个交点即为切点。
两个函数的图像相切
两个函数在某点处相切,则二者在此点处的斜率相等。
斜率表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。
如果直线与x轴互相垂直,直角的正切值无穷大,故此直线不存在斜率。当直线L的斜率存在时,对于一次函数y=kx+b,(斜截式)k即该函数图像的斜率。
直线斜率相关:
对于任意函数上任意一点,其斜率等于其切线与x轴正方向的夹角,即tanα。
斜率计算:ax+by+c=0中,k=-a/b。
直线斜率公式:k=(y2-y1)/(x2-x1)。
两条垂直相交直线的斜率相乘积为-1:k1*k2=-1。
当k>0时,直线与x轴夹角越大,斜率越大;当k<0时,直线与x轴夹角越小,斜率越小。
相切斜率的关系
相切斜率的关系为两个斜率相乘等于负一,可以设两直线斜率K1、K2,因为相切,所以垂直,二者夹角为90°,即(K1-K2)/(1+K1*K2)趋向无穷大所以分母=0,所以K1*K2=-1。
相切是平面上的圆与另一个几何形状的一种位置关系。若直线与曲线交于两点,且这两点无限相近,趋于重合时,该直线就是该曲线在该点的切线。初中数学中,若一条直线垂直于圆的半径且过圆的半径的外端,称这条直线与圆相切。
曲线与线相切斜率的关系
若一条直线与一条曲线相切,那么这条直线的斜率就是该曲线在切点处的导数.
以上就是关于直线与曲线相切斜率有什么关系的全部内容,以及直线与曲线相切斜率有什么关系的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。