超几何分布的期望推导
超几何分布的期望推导是:E(X)=(n*M)/N[其中x是样本数,道n为样本容量,M为样本总数,N为总体中的个体总数],求出均内值,这就是超几何分布的数学期望值。
在统计学中,当估算一个变量的期望值时,一个经常用到的方法是重复测量此变量的值,然后用所得数据回的平均值来作为此变量的期望值的估计。在概率分布中,期望值和方差或标准差是一种分布的重要特征。
以上就是关于超几何分布的期望推导的全部内容,以及超几何分布的期望推导的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。