概率的估计值怎么样求
当样本数量足够多的时候概率的估计值近似等于频率,概率=事件发生次数/样本总数×100%。
概率,亦称“或然率”,它是反映随机事件出现的可能性大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。经过大量反复试验,常有m/n越来越接近于某个确定的常数。该常数即为事件A出现的概率,常用P(A)表示。
概率论估计精度怎么算的
概率论估计精度怎么算?当样本数量足够多的时候概率的估计值近似等于频率,概率=事件发生次数/样本总数×100%。
概率,亦称“或然率”,它是反映随机事件出现的可能性大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。经过大量反复试验,常有m/n越来越接近于某个确定的常数。该常数即为事件A出现的概率,常用P (A) 表示。
求一个事件的估计值。如果是估计发生的概率,那么就大量重复实验,样本容量趋于无穷时,频率趋近于概率。如果是估计参数,比如期望、方差等等。那么就用参数估计的公式。有矩法估计和极大似然估计两种方法。也可以大量重复实验,从而得到估计值。
已知概率密度函数求矩估计量
求矩估计量、矩估计值和极大似然估计值的详细过程:
1、根据题目给出的概率密度函数,计算总体的原点矩(如果只有一个参数只要计算一阶原点矩,如果有两个参数要计算一阶和二阶)。由于有参数这里得到的都是带有参数的式子。如果题目给的是某一个常见的分布,就直接列出相应的原点矩(E(x))。
2、根据题目给出的样本。按照计算样本的原点矩,让总体的原点矩与样本的原点矩相等,解出参数。所得结果即为参数的矩估计值。
矩估计量的背景知识:
简单的讲,概率密度函数表示的就是随机变量X在某点的概率(所有点的概率和为1)。对于连续型的随机变量,其图像通常为一个连续的曲线,离散型的随机变量的图像一般是一个一个点组成。
“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分。似然性则是用于在已知某些观测所得到的结果时,对有关事物的性质的参数进行估计。这里类似于“贝叶斯方法”的思路。
已知总体x的概率密度只有两种可能,设h0
已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。
极大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。
当然极大似然估计只是一种粗略的数学期望,要知道它的误差大小还要做区间估计。
扩展资料:
由最值原理,如果最值存在,此方程组求得的驻点即为所求的最值点,就可以很到参数的极大似然估计。极大似然估计法一般属于这种情况,所以可以直接按上述步骤求极大似然估计。
在寻找参数的矩法估计量时,对总体原点矩不存在的分布如柯西分布等不能用,另一方面它只涉及总体的一些数字特征,并未用到总体的分布。
因此矩法估计量实际上只集中了总体的部分信息,这样它在体现总体分布特征上往往性质较差,只有在样本容量n较大时,才能保障它的优良性,因而理论上讲,矩法估计是以大样本为应用对象的。
以上就是关于概率的估计值怎么样,概率论估计精度怎么算的的全部内容,以及概率的估计值怎么样求的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。