乘法定律有哪些
乘法定律有交换律、结合律、分配律。
乘法运算定律,也叫乘法的性质,有交换律、结合律、分配律,应用这些运算定律,可以使部分乘法题计算简便。
乘法交换律是两个数相乘,交换因数的位置,它们的积不变。
乘法结合律是三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。
乘法分配律是两个数的和(差)同一个数相乘,可以先把两个加数(减数)分别同这个数相乘,再把两个积相加(减),积不变。
乘法运算规律有哪些
数学中乘法运算定律有:乘法交换律、乘法结合律和乘法分配律。
1、乘法交换律:两个数相乘,交换两个因数的位置,积不变。用字母表示:a×b=b×a。
2、乘法结合律:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。用字母表示:(a×b)×c=a×(b×c)。
3、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。用字母表示:(a+b)×c=a×c+b×c。
扩展资料:
1、乘法原理:如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。
在概率论中,一个事件,出现结果需要分n个步骤,第1个步骤包括M1个不同的结果,第2个步骤包括M2个不同的结果,……,第n个步骤包括Mn个不同的结果。那么这个事件可能出现N=M1×M2×M3×……×Mn个不同的结果。
2、加法原理:如果因变量f与自变量(z1,z2,z3…, zn)之间存在直接正比关系并且每个自变量存在相同的质,缺少任何一个自变量因变量f仍然有其意义,则为加法。
在概率论中,一个事件,出现的结果包括n类结果,第1类结果包括M1个不同的结果,第2类结果包括M2个不同的结果,……,第n类结果包括Mn个不同的结果,那么这个事件可能出现N=M1+M2+M3+……+Mn个不同的结果。
乘法有哪些定律
1、乘法定律:
乘法分配律:a(b+c)=ab+ac
乘法结合律:ab+ac=a(b+c)
乘法交换律:ab=ba
2、加法定律:
加法没有分配律
加法结合律:(a+b)+c=a+(b+c)
加法交换律:a+b=b+a
扩展资料
1、在连加计算中,当某些加数相加可以凑成整十、整百、整千的数时,运用加法运算律可使计算简便。
口诀:连加计算仔细看,考虑加数是关键。整十、整百与整千,结合起来更简单。交换定律记心间,交换位置和不变。结合定律应用广,加数凑整更简便。
2、在连乘计算中,当某两个乘数的积正好是整十、整百、整千的数时,运用乘法运算律可使计算简便。
运用分解的方法,将某个乘数拆分成几个数相乘的形式,使其中的乘数与其他乘数的乘积“凑整”。
乘法分配律特别要注意“两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加”中的分别两个字。
注意:
1、 一定要括号外的数分别乘括号里的两个数,再把积相加。乘法对于减法的分配律是括号外的数分别乘括号里的两个数,再把积相减。
2、 两个积中相同的因数只能写一次。
乘法运算律有哪些用字母表示
乘法的运算定律,有交换律,结合律和分配律。
一、定义:乘法运算定律,也叫乘法的性质,有交换律,结合律,
分配律,应用这些运算定律,可以使部分乘法题计算简便。
1、乘法交换律:
乘法交换律是两个数相乘,交换因数的位置,它们的积不变。
a×b=b×a
则称:交换律。
2、乘法结合律:
三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。主要公式为a×b×c=a×(b×c),
,它可以改变乘法运算当中的运算顺序
。在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
3、乘法分配律:
两个数的和同一个数相乘,等于把两个加数分别同这个数相乘,再把两个积加起来,和不变。字母表达是:a×(b+c)
=a×b+a×c
①、变式一:a×(b-c)
=a×b-a×c
②、变式二:a×b+a=a×(b+1)
以上就是关于乘法定律有哪些,乘法运算规律有哪些的全部内容,以及乘法定律有哪些的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。