泛函分析有什么用
泛函分析的用处是:
泛函分析泛函分析(FunctionalAnalysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。泛函分析是由对变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。使用泛函作为表述源自变分法,代表作用于函数的函数。巴拿赫(StefanBanach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家伏尔泰拉(VitoVolterra)对泛函分析的广泛应用有重要贡献。
从现代观点来看,泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类泛函分析空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间,其上的范数由一个内积导出。这类空间是量子力学数学描述的基础。更一般的泛函分析也研究Fréchet空间和拓扑向量空间等没有定义范数的空间。
应用泛函分析在物理专业有哪些应用
泛函分析对于研究现代物理学是一个有力的工具。
n维空间可以用来描述具有n个自由度的力学系统的运动,实际上需要有新的数学工具来描述具有无穷多自由度的力学系统。比如梁的震动问题就是无穷多自由度力学系统的例子。一般来说,从质点力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统。现代物理学中的量子场理论就属于无穷自由度系统。
泛函分析在数学体系中的作用
刚刚学习了泛函分析,浅薄地说说自己的感觉吧,可能有所偏颇,但希望能帮助题主。
泛函分析研究的对象主要是各种线性算子,这些算子与线性函数的不同之处在于,算子的定义域和值域都可以不是常见的“数”,而是抽象出来的空间。所以在物理中,大量具有相似特点(就是保持线性性)的算子他们的性质需要抽象出来研究。这就是我认为的泛函分析的主要作用。
而且更重要的是,泛函分析主要是研究那些定义域是无穷维的线性空间的算子。对于有限维的线性空间,线性代数已经研究地比较透彻了。但是在现实世界中,无论是自然科学还是社会科学,维度,或者说影响因素常常是无穷多的,特别在物理上。泛函分析既是考察这些无穷维空间上算子的学科。
拓扑学和泛函分析哪个对经济学研究更有用
拓扑学,主要是应用在运筹学中的理论,图论,线性规划,排队论,决策等等
而泛函分析则主要是应用在电子,通信等领域。
如果是学经济学的,建议学拓扑学。
同时拓扑学相对比泛函好理解一些。
拓扑学和泛函分析哪个好学
感觉拓扑学容易些,泛函分析完全是在听天书
,量子力学这种玄幻的东西可不是盖的,不过要修这几门的话数学分析一定要过硬
拓扑学主要是应用在运筹学中的理论,图论,线性规划,排队论,决策等等;而泛函分析则主要是应用在电子,通信等领域。如果是学经济学的,建议学拓扑学。
拓扑学是研究几何图形在连续改变形状时还能保持不变的一些特性,它只考虑物体间的位置关系而不考虑它们的距离和大小。简单地说,拓扑就是研究有形的物体在连续变换下,怎样还能保持性质不变。
泛函分析主要是研究由函数构成的空间(如巴拿赫空间,希尔伯特空间),量子力学的一个数学基础,需要很好的分析学基础。
希望对你有帮助
以上就是关于泛函分析有什么用,应用泛函分析在物理专业有哪些应用的全部内容,以及泛函分析有什么用的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。