通项公式是什么
通项公式是数列{an}的第n项an与n之间的关系可以用一个公式来表示,这个公式叫做数列的通项公式。
有的数列的通项可以用两个或两个以上的式子来表示。
没有通项公式的数列也是存在的,如所有质数组成的数列。
若已知一个数列的通项公式,那么只要依次用1、2、3去代替公式中的n,就可以求出这个数列的各项。
等差数列的通项公式是什么
等差数列的通项公式为:an=a1+(n-1)d
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (n属于自然数)。
a1为首项,an为末项,n为项数,d为等差数列的公差。
等比数列 an=a1×q^(n-1);
求和:Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1)
推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)
Sn =a1+ a2+ a3+...... +an
Sn =an+ an-1+an-2...... +a1
上下相加得Sn=(a1+an)n/2
扩展资料:
证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立;
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。
例:
求证:
1×2×3×4 + 2×3×4×5 + 3×4×5×6 + .…… + n(n+1)(n+2)(n+3) = [n(n+1)(n+2)(n+3)(n+4)]/5
证明:
当n=1时,有:
1×2×3×4 = 24 = 2×3×4×5/5
假设命题在n=k时成立,于是:
1×2x3×4 + 2×3×4×5 + 3×4×5×6 + .…… + k(k+1)(k+2)(k+3) = [k(k+1)(k+2)(k+3)(k+4)]/5
则当n=k+1时有:
1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + (k+1)(k+2)(k+3)(k+4)
= 1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4)
= [k(k+1)(k+2)(k+3)(k+4)]/5 + (k+1)(k+2)(k+3)(k+4)
= (k+1)(k+2)(k+3)(k+4)*(k/5 +1)
= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5
即n=k+1时原等式仍然成立,归纳得证。
展开式的通项公式是什么
二项展开式的通项公式是T(r+1)=C(n,r)a^(n-r)b^r T(r+1)表示二项展开式的第r+1项,C(n,r)表示n个数中取r个数的组合^表示次方,表示后面的数是前面的数的上标次方的意思。
二项展开式是依据二项式定理对(a+b)n进行展开得到的式子,由艾萨克·牛顿于1664-1665年间提出。二项展开式是高考的一个重要考点。在二项式展开式中,二项式系数是一些特殊的组合数,与术语“系数”是有区别的。二项式系数最大的项是中间项,而系数最大的项却不一定是中间项。
需要主要的关于通项公式的几个要点有:
1. 项数:总共二项式展开有n+1项,通常通项公式写的是r+1项。
2. 通项公式的第r+1项的二次项系数是Cnk,二次项系数不是项的系数。
3. 如果二项式的幂指数是偶数,中间的一项二次项系数最大。如果是奇数,则最中间2项最大并且相等。
4.指数:a按降幂排列,b按升幂排列,每一项中a、b的指数和为n。
以上就是关于通项公式是什么,等差数列的通项公式是什么的全部内容,以及通项公式是什么的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。