如何证明正弦定理
证明正弦定理的方法是做一个边长为a,b,c的三角形,对应角分别是A,B,C,从角C向c边做垂线,得到一个长度为h的垂线和两个直角三角形即可。
正弦定理是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”。
正弦定理的证明过程完整版
正弦定理证明过程如下:
步骤1、在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a·sinB
CH=b·sinA
∴a·sinB=b·sinA
得到 a/sinA=b/sinB
同理,在△ABC中, b/sinB=c/sinC
步骤2、证明a/sinA=b/sinB=c/sinC=2R:
如图,任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D.
连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。
平面向量证法:
∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)
∴c·c=(a+b)·(a+b)
∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)
(以上粗体字符表示向量)
又∵Cos(π-θ)=-CosC
∴c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式)
再拆开,得c^2=a^2+b^2-2*a*b*CosC
同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。
正弦定理齐次式是什么意思
在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径,即a/sinA=b/sinB=c/sinC= 2r=D(r为外接圆半径,D为直径)。
在解三角形中,有以下的应用领域:
1、已知三角形的两角与一边,解三角形。
2、已知三角形的两边和其中一边所对的角,解三角形。
3、运用a:b:c=sinA:sinB:sinC解决角之间的转换关系。
证明方法:
最早为13世纪阿拉伯数学家、天文学家纳绥尔丁和15世纪德国数学家雷格蒙塔努斯所采用。“同径法 ”是将三角形两个内角的正弦看作半径相同的圆中的正弦线(16世纪以前,三角函数被视为线段而非比值),利用相似三角形性质得出两者之比等于角的对边之比。
纳绥尔丁同时延长两个内角的对边,构造半径同时大于两边的圆。雷格蒙塔努斯将纳绥尔丁的方法进行简化,只延长两边中的较短边,构造半径等于较长边的圆。17~18世纪,中国数学家、天文学家梅文鼎和英国数学家辛普森各自独立地简化了“同径法”。
正弦定理的证明过程
证明正弦定理的方法是做一个边长为a,b,c的三角形,对应角分别是A,B,C,从角C向c边做垂线,得到一个长度为h的垂线和两个直角三角形即可。
正弦定理是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”。“同径法”,最早为13世纪阿拉伯数学家、天文学家纳绥尔丁和15世纪德国数学家雷格蒙塔努斯所采用。
“同径法”是将三角形两个内角的正弦看作半径相同的圆中的正弦线(16世纪以前,三角函数被视为线段而非比值),利用相似三角形性质得出两者之比等于角的对边之比。纳绥尔丁同时延长两个内角的对边,构造半径同时大于两边的圆。
正弦定理提出者人生经历:
原担任库锡斯坦总督阿卜杜拉希姆的星象官。后到波斯阿拉木特堡伊斯玛仪派的尼扎尔派第八代长老鲁克尼丁(?~1256)所占据的阿拉木特堡总部任助手并从事天文研究。1256年11月,旭烈兀率蒙古军侵入阿拉木特的重要据点麦门吉兹城堡,纳绥尔丁敦促鲁克尼丁向蒙古人投降,蒙古人杀其长老和信徒,占领所有堡垒。纳绥尔丁投蒙古军继续西侵,任旭烈兀随军参事。
1258年,蒙古军攻陷巴格达,灭阿拔斯王朝后,旭烈兀任命纳绥尔丁为主管宗教及遗产的官员,并采纳其建议,在马拉格城西山岗上建造了一座规模宏大的天文台,配备有精密的观测仪器,设有藏书40万册的图书馆,纳绥尔丁担任台长。该台招聘西班牙、阿拉伯、叙利亚、波斯及中国的天文历算学家,从事观测和研究。
以上就是关于如何证明正弦定理,正弦定理的证明过程完整版的全部内容,以及如何证明正弦定理的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。