复数是必修几的知识点
复数是选修2—2的知识点。
复数x被定义为二元有序实数对(a,b),记为z=a+bi,这里a和b是实数,i是虚数单位。
在复数a+bi中,a=Re(z)称为实部,b=Im(z)称为虚部。
当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。
高二下册数学必修二选择性二
1.高二下册数学必修二重要知识点
复数的概念:
形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。
复数的表示:
复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。
复数的几何意义:
(1)复平面、实轴、虚轴:
点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数
(2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即
这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。
这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。
复数的模:
复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=
虚数单位i:
(1)它的平方等于-1,即i2=-1;
(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立
(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
复数模的性质:
复数与实数、虚数、纯虚数及0的关系:
对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。
2.高二下册数学必修二重要知识点
1、求函数的值和最小值
f(x)为关于x的函数,确定定义域后,应该可以求f(x)的值域,值域区间内,就是函数的值和最小值。
一般而言,可以把函数化简,化简成为:
f(x)=k(ax+b)2+c的形式,在x的定义域内取值。
当k>0时,k(ax+b)2≥0,f(x)有极小值c。
当k<0时,k(ax+b)2≤0,f(x)有值c。
2、常见的求函数最值方法有
配方法:形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值。
判别式法:形如的分式函数,将其化成系数含有y的关于x的二次方程.由于,0,求出y的最值,此种方法易产生增根,因而要对取得最值时对应的x值是否有解检验。
利用函数的单调性首先明确函数的定义域和单调性,再求最值。
利用均值不等式,形如的函数,及,注意正,定,等的应用条件,即:a,b均为正数,是定值,a=b的等号是否成立。
换元法:形如的函数,令,反解出x,代入上式,得出关于t的函数,注意t的定义域范围,再求关于t的函数的最值。
3.高二下册数学必修二重要知识点
1、双曲线渐近线方程
双曲线的渐近线方程:y=±(b/a)x(当焦点在x轴上),y=±(a/b)x(焦点在y轴上),或令双曲线标准方程x2/a2-y2/b2=1中的1为零,即得渐近线方程。
方程x2/a2-y2/b2=1(a>0,b>0)
c2=a2+b2
焦点坐标(-c,0),(c,0)
渐近线方程:y=±bx/a
方程y2/a2-x2/b2=1(a>0,b>0)
c2=a2+b2
焦点坐标(0,c),(0,-c)
渐近线方程:y=±ax/b
2、渐近线的特点
无限接近,但不可以相交。分为垂直渐近线、水平渐近线和斜渐近线。
当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。
根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。
y=k/x(k≠0)是反比例函数,其图象关于原点对称,x=0,y=0为其渐近线方程
当焦点在x轴上时双曲线渐近线的方程是y=[±b/a]x
当焦点在y轴上时双曲线渐近线的方程是y=[±a/b]x
4.高二下册数学必修二重要知识点
1、约数的例子
在自然数(0和正整数)的范围内,
任何正整数都是0的约数。
4的正约数有:1、2、4。
6的正约数有:1、2、3、6。
10的正约数有:1、2、5、10。
12的正约数有:1、2、3、4、6、12。
15的正约数有:1、3、5、15。
18的正约数有:1、2、3、6、9、18。
20的正约数有:1、2、4、5、10、20。
注意:一个数的约数必然包括1及其本身。
2、约数的个数怎么求
要用到约数个数定理
对于一个数a可以分解质因数:a=a1的r1次方乘以a2的r2次方乘以a3的r3次方乘以……则a的约数的个数就是(r1+1)(r2+1)(r3+1)……
需要指出来的是,a1,a2,a3……都是a的质因数。r1,r2,r3……是a1,a2,a3……的指数。
比如,360=2^3*3^2*5(^是次方的意思)
所以个数是(3+1)*(2+1)*(1+1)=24个
5.高二下册数学必修二重要知识点
1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.
2.绝对值不等式的解法及其几何意义是什么?
3.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
4.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
5.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.
6.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a
数列
7.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
8.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
9.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
10.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
11.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
以上就是关于复数是必修几的知识点,高二下册数学必修二选择性二的全部内容,以及复数是必修几的知识点的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。