幂的乘方法则是什么
幂的乘方法则是幂的乘方,底数不变,指数相乘。求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数,当a?看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。
幂的乘方(a^m)^n=a^(mn),与积的乘方(ab)^n=a^nb^n
(1)幂的乘方,(a^m)^n=a^(mn),(m,n都为正整数)运用法则时注意以下以几点:
①幂的底数a可以是具体的数也可以是多项式。如[(x+y)2]3的底数为(x+y),是一个多项式,[(x+y)2]3=(x+y)6
②要和同底数幂的乘法法则相区别,不要出现下面的错误。如:
(2)积的乘方(ab)^n=a^nb^n,(n为正整数)运用法则时注意以下几点:注意与前二个法则的区别:积的乘方等于将积的每个因式分别乘方(即转化成若干个幂的乘方),再把所得的幂相乘。
幂的乘方法则公式推导过程
幂的乘方法则公式 (1)同底数幂的乘法:同底数幂相乘,底数不变,指数相加。
a m ×a n =a (m+n) (a≠0,m,n均为正整数,并且m>n)
(2)同底数幂的除法:同底数幂相除,底数不变,指数相减。
a m ÷a n =a (m-n) (a≠0,m,n均为正整数,并且m>n)
(3)幂的乘方:幂的乘方,底数不变,指数相乘。
(a^m)^n=a^(mn),(m,n都为正整数)
(4)积的乘方:等于将积的每个因式分别乘方,再把所得的幂相乘。
(ab)^n=a^nb^n,(n为正整数)
(5)零指数:
a 0 =1 (a≠0)
(6)负整数指数幂
a-p=1/a p (a≠0, p是正整数)
(7)负实数指数幂
a^(-p)=1/(a)^p或(1/a)^p(a≠0,p为正实数)
(8)正整数指数幂
①a m a n =a m+n
②(a m ) n =a mn
③a m /a n =a m-n (m大于n,a≠0)
④(ab) n =a n b n
(9)分式的乘方:把分式的分子、分母分别乘方即为乘方结果
(a/b)^n=(a^n)/(b^n),(n为正整数) ;
幂的乘方的运算法则是什么
指数加减底不变,同底数幂相乘除。
指数相乘底不变,幂的乘方要清楚。
积商乘方原指数,换底乘方再乘除。
非零数的零次幂,常值为 1不糊涂。
负整数的指数幂,指数转正求倒数。
拓展资料:
一般地,在数学上我们把n个相同的因数a相乘的积记做a^n。
这种求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在a^n中,a叫做底数,n叫做指数。
a^n读作“a的n次方”或“a的n次幂“。一个数可以看做这个数本身的一次方。例如,5就是5^1,指数1通常省略不写。
二次方也叫做平方,如5^2通常读做”5的平方“;三次方也叫做立方,如5^3可读做”5的立方“。
幂的运算法则
幂的运算法则如下:
1、同底数幂的乘法;
2、同底数幂的除法;
3、幂的乘方与积的乘方。
同底数幂的乘法:a·a·a=a,在整个式子中字母m、n、p均为正整数,不然的话整个式子是没有办法成立的。
同底数幂的除法:同底数幂的除法分为三种,第一种同底数幂的除法a÷a=a(),其中a不等于0,m和n均为正整数,而且m大于n。零指数a=1,其中a不等于0。最后就是负整数指数幂a= (其中a≠0, p是正整数),若是当a=0时没有意义的话,则0,0都是没有意义的。
幂的乘方与积的乘方:幂的乘方为(a)=a(),和积的乘方(ab)=ab,以上就是幂的运算法则的全部算法了。
幂的运算注意事项
1、幂的底数a可以是具体的数也可以是多项式。
2、积的乘方(ab)^n=a^nb^n,(n为正整数)运用法则时注意:积的乘方等于将积的每个因式分别乘方(即转化成若干个幂的乘方),再把所得的幂相乘。积的乘方可推广到3个以上因式的积的乘方。
3、在做题的时候要看清楚是同底数幂相乘的时候底数不变的情况下指数相加,而同底数幂相除的情况下,底数不变指数是需要相减的,而幂的乘方底数不变,指数相乘,而指数幂相乘,指数不变,底数相乘,通指数幂相乘指数不变,底数相除。
以上就是关于幂的乘方法则是什么,幂的乘方法则公式推导过程的全部内容,以及幂的乘方法则是什么的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。