鸡兔同笼问题解法 公式
鸡兔同笼问题的解法公式是(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数。
鸡兔同笼问题是我国古算书《孙子算经》中著名的数学问题,其内容是:“今有雉(鸡)兔同笼,上有三十五头,下有九十四足。
问雉兔各几何。
”意思是:有若干只鸡和兔在同个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。
求笼中各有几只鸡和兔?
小学鸡兔同笼30个典型题
数学鸡兔同笼公式(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数,总只数-鸡的只数=兔的只数。
鸡兔同笼,是中国古代著名典型趣题之一,大约在1500年前,《孙子算经》中就记载了这个有趣的问题。今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?
这一问题的本质是一种二元方程。如果教学方法得当,可以让小学生初步地理解未知数和方程等概念,并锻炼从应用问题中抽象出数的能力。一般在小学四到六年级时,配合一元一次方程等内容教授。
同一本书中还有一道变题:今有兽,六首四足;禽,四首二足,上有七十六首,下有四十六足。问:禽、兽各几何?答曰:八兽、七禽。题设条件包括了不同数量的头和不同数量的足。
鸡兔同笼的方法技巧:
一、枚举法(列表法)
方法很简单过程很复杂,就是根据不断变化鸡和兔的数量,分别把鸡和兔子的腿的的数量填入表格中,知道找到正确的答案为止,这种方法只适合与课堂教学中的探索和对其他方法的引导,由于这种方法太过笨拙,用时较多,在日常的练习和考试中一般不适用。
二、假设法(矛盾法)
这种解决“鸡兔同笼”问题的主要解决方法之一,该方法主要是根据题目当中的已知条件,对题目进行某种假设,然后按照条件进行推理,找到与题目数量的矛盾之处,最后进行合理的变化从而得出正确的结论。
同时呢,假设法也是奥数题目中经常遇到的方法(这里仅对于鸡兔同笼问题进行讲解,其他问题的假设法这里暂时不再赘述),这种方法关键是——通过假设找到与题目中的数量出现的矛盾之处。
鸡兔同笼解题方法二元一次方程
鸡兔同笼的解题方法是假设法和判定法,公式是(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数,鸡兔同笼是中国古代著名典型趣题之一。
鸡兔同笼的推广“禽兽问题”就是一般的二元线性方程,二元方程在初中时期的标准解法是代入法或加减法(也称高斯消去法)。因为“鸡数”和“兔数”具有整数性质,可以选择把所有可能的整数组合列出,对照获得正确答案。
鸡兔同笼问题的算术解法
鸡兔同笼解决公式如下:
1、假设法:(总脚数-总头数×2)÷2=兔子数、总头数-兔子数=鸡数。
2、判定法:(总头数×4-总脚数)÷2=鸡数、总头数-鸡数=兔子数。
3、抬脚法:总脚数÷2-总头数=兔子数、总头数-兔子数=鸡数。
4、学习法:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数。(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数。
5、口诀法:假“兔”得“鸡”(第一次算得的数)。
6、假“鸡”得“兔”类型:(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数。
7、假“兔”得“鸡”类型:(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数。
历史背景:
鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:
今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
这四句话的意思是:
有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?
这一问题的本质是一种二元方程。如果教学方法得当,可以让小学生初步地理解未知数和方程等概念,并锻炼从应用问题中抽象出数的能力。一般在小学四到六年级时,配合一元一次方程等内容教授。
以上就是关于鸡兔同笼问题解法 公式,小学鸡兔同笼30个典型题的全部内容,以及鸡兔同笼问题解法 公式的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。