8和125的倍数特征是什么
8的倍数特征是全为偶数,能被8整除的数的特征是最后三位都能被8整除,125倍数的特征是末三位能被125整除的数。
倍数特征就是某个数的倍数的特点。
一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。
如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
小组合作图片
4和25 2的平方 和 5的平方。 4 = 2×2, 25 = 5×5
8和125 2的立方 和 5的立方。 8 = 2×2×2, 125 = 5×5×5
253的倍数各有什么特征
125倍数5 25 125
36倍数6 36
75倍数5 15 75
8倍数2 4 8
对于整数m,能被n整除(m/n),那么m就是n的倍数。相对来说,称n为m的因数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
2的倍数的特征
一个数的末尾是偶数(0 2 4 6 8),这个数就是2的倍数。 如3776。3776的末尾为6,是2的倍数。3776除以2=1888
3的倍数的特征
一个数的各位数之和是3的倍数,这个数就是3的倍数。4926。(4+9+2+6)除以3=7,是3的倍数。4926除以3=1642
4的倍数的特征
一个数的末两位是4的倍数,这个数就是4的倍数。 2356。56除以4=14,是4的倍数。2356除以4=589
5的倍数的特征
一个数的末尾是0 5,这个数就是5的倍数。 7775。7775的末尾为5,是5的倍数。7775除以5=15556的倍数的特征
6的倍数特征
一个数只要能同时被2和3整除,那么这个数就能被6整除。
7的倍数特征
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
8的倍数的特征
一个数的末三位是8的倍数,这个数就是8的倍数。 7256。256除以8=32,是8的倍数。7256除以8=907
9的倍数特征
若一个整数的数字和能被9整除,则这个整数能被9整除。
10的倍数特征
若一个整数的末位是0,则这个数能被10整除。
11的倍数特征
(1)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1! (2)将一个数从个位开始两两分隔,若所有分隔开的数和为11的倍数,则这个数为11的倍数(如32571,分隔成3 25 71,3+25+71=99,99为11倍数,所以32571是11的倍数)
12的倍数特征
若一个整数能被3和4整除,则这个数能被12整除。
13的倍数特征
若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
17的倍数特征
若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
19的倍数特征
若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。 若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
23的倍数特征
若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除
以上就是关于小组合作图片,8和25的倍数特征是什么的全部内容,以及8和125的倍数特征是什么的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。