大数据4v是什么意思
大数据4v是指Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。大数据具有海量性、多样性、高速性、易变性的特征。
容量(Volume):数据的大小决定所考虑的数据的价值的和潜在的信息;种类(Variety):数据类型的多样性;速度(Velocity):指获得数据的速度;可变性(Variability):妨碍了处理和有效地管理数据的过程。大数据三大特征
第一个特征是数据类型繁多。包括网络日志、音频、视频、图片、地理位置信息等等多类型的数据对数据的处理能力提出了更高的要求。第二个特征是数据价值密度相对较低。如随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。第三个特征是处理速度快、时效性要求高。这是大数据区分于传统数据挖掘最显著的特征。
以下哪个不是大数据的4v特性
大数据的4v特征分别是Volume(大量性)、Velocity(高速性)、Variety(多样性)、Value(价值性)。
大数据特征的概念由维克托迈尔·舍恩伯格和肯尼斯克耶编写的《大数据时代》中提出。
Volume(大量性)
截至目前,人类生产的所有印刷材料的数量是200PB,而历史上全人类总共说过得话的数据量大约是5EB。当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。
2. Velocity(高速性)
这是大数据区于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据使用量将达到35.2ZB。在如此海量的数据面前,处理数据的效率就是企业的生命。
3. Variety(多样性)
这种典型的多样性也让数据呗分为结构化数据和非结构化数据。相对于以往便储存的以数据库或文本为主的结构变化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等。这些多类型的数据对数据的处理能力提出了更高要求。
4. Value(价值性)
价值密度的高低与数据总量的大小成反比。如何快速对有价值数据“提纯”成为目前大数据背景下待解决的难题。
大数据4v特征有什么,分别有什么特点
大数据特征的特征是指:一般认为,大数据主要具有以下4个方面的典型特征,即大量(Volume)、多样(Variety)、高速(Velocity)和价值(Value),即所谓的4V。其特点如下:
1、Volume,大数据的特征首先就是数据规模大。随着互联网、物联网、移动互联技术的发展,人和事物的所有轨迹都可以被记录下来,数据呈现出爆发性增长。
2、Variety,数据来源的广泛性,决定了数据形式的多样性。大数据可以分为三类,一是结构化数据,如财务系统数据、信息管理系统数据、医疗系统数据等,其特点是数据间因果关系强;一是非结构化的数据,如视频、图片、音频等,其特点是数据间没有因果关系;三是半结构化数据,如HTML文档、邮件、网页等,其特点是数据间的因果关系弱。
3、Velocity,数据的增长速度和处理速度是大数据高速性的重要体现。与以往的报纸、书信等传统数据载体生产传播方式不同,在大数据时代,大数据的交换和传播主要是通过互联网和云计算等方式实现的,其生产和传播数据的速度是非常迅速的。另外,大数据还要求处理数据的响应速度要快。
4、大数据的核心特征是价值,其实价值密度的高低和数据总量的大小是成反比的,即数据价值密度越高数据总量越小,数据价值密度越低数据总量越大。任何有价值的信息的提取依托的就是海量的基础数据。当然目前大数据背景下有个未解决的问题,如何通过强大的机器算法更迅速地在海量数据中完成数据的价值提纯。
大数据应用实例:互联网是最早利用大数据进行精准营销的行业,通过大数据不仅可以为企业进行精准销,还可以快速友好地对用户实施个性化解决方案。医疗行业拥有大量的病例、病理报告、治愈方案、药物报告等。如果这些数据可以被整理和应用将会极大地帮助医生和病人。
数据预处理所包含的方面
1、数据清洗:删除原始数据集中无关数据、重复数据、平滑噪声数据,处理缺失值、异常值等。
2、数据集成:将多个数据源合并存放在一个一致的数据存储中的过程。在数据集成时,来自多个数据源的现实世界实体的表达形式是不一样的,有可能不匹配,要考虑实体识别问题和属性冗余问题,从而将源数据在最低层上加以转换、提炼和集成。
3、数据变换: 主要是对数据进行规范化处理,将数据转换成适当的形式,以适用于挖掘任务以及算法的需要。
4、数据归约:在大数据集上进行复杂的数据分析和挖掘需要很长时间。数据规约产生更小但保持原数据完整性的新数据集。
以上就是关于大数据4v是什么意思,以下哪个不是大数据的4v特性的全部内容,以及大数据4v是什么意思的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。